統計の考え方 第 6 回 (確率 / 条件つき確率と独立性) 「確率の定義」 講義ノート目次

ある事象 x が必ず起きることが分かっているとき、 起こりやすさに応じて 0 から 1 の間の数値をとるものを、 確率 P(x) という。 独立した試行において起こりうる事象の場合の数 n のうち、 事象 A の起こる場合の数を a とすると、事象 A の起こる確率は P(x) = a/n となる。

確率変数
ある事象が起こる可能性について示す変数。離散型と連続型がある。 1 回のコイントスを考えると、表と裏の 2 つで離散型。 電子がある箱の中に存在する場所をあらわす確率変数は、連続型。
標本空間
標本空間とは起こりうる事象全てを含んだ空間のことである。 コイントスをしたなら、事象 y の集合 B は B = {"しなかった", "表が出た", "裏が出た"} の 3 つである。
確率測度
確率変数に応じて、0 から 1 の間の数値を対応させる関数である。 コイントス 1 回で表の出る確率は P(表) と表す。 事象が同じ確率分布をもつ場合、一様分布という。

確率の意味

ある事象 A の確率 P(x) とは、全部の数 N で、あたりの数 a を割ったもの

P(x) = a / N