統計の考え方 第 3 回 (順列) 「だいたいの大きさ」 講義ノート目次

実験などではだいたいどの桁くらいなのか、を知ることのほうが、 正確な数値より必要なことが多い。

「100003 人のうち、431 人の解答を得た。」は、 「だいたい 4% の解答を得た。」の方が分かりやすい。
10 のべきで、母集団と小さな値との差を調べて、 どちらの話が重大かかどうか知ろうとすることがある。
60 [kg] = 6.0 × 10 [kg] の人が 1 割太った、は 6 [kg]。 66 [kg] となる場合。 だから、べきで調べると、1 - 0 = 1 桁異なる。 1% 太った、は 600[g] = 0.6[kg] = 6.0 × 10-1[kg] 60.6 [kg] となる場合。 だから、べきで調べると、1 - (-1) = 2 桁異なる。 並んでいる数値が遠いので、後者の場合はそれほど重大ではない。