統計の考え方
第 3 回
(順列)
「だいたいの大きさ」
講義ノート目次
実験などではだいたいどの桁くらいなのか、を知ることのほうが、
正確な数値より必要なことが多い。
「100003 人のうち、431 人の解答を得た。」は、
「だいたい 4% の解答を得た。」の方が分かりやすい。
10 のべきで、母集団と小さな値との差を調べて、
どちらの話が重大かかどうか知ろうとすることがある。
60 [kg] = 6.0 × 10 [kg] の人が 1 割太った、は 6 [kg]。
66 [kg] となる場合。
だから、べきで調べると、1 - 0 = 1 桁異なる。
1% 太った、は 600[g] = 0.6[kg] = 6.0 × 10-1[kg]
60.6 [kg] となる場合。
だから、べきで調べると、1 - (-1) = 2 桁異なる。
並んでいる数値が遠いので、後者の場合はそれほど重大ではない。